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ABSTRACT 
Human activity monitoring via pose estimation and 

correction has a lot of real world applications. Real 

time pose estimation can be used for solving many 

problems in fields like fitness training, sports 

coaching, gaming, motion capture and assisted 

living. Our focus was on utilizing human pose 

estimation for fitness training. We created an AI 

trainer that estimates the human pose and corrects 

it while performing a workout routine. The focus of 

this software is to create an immersive home 

workout experience with an AI-assisted system. To 

achieve this, we reviewed different pose estimation 

models and pose correction algorithms. Our main 

aim was to create an application that runs in 

realtime on almost every device and gives real time 

pose correction commands.  

Keywords: pose estimation, pose correction, angle 

correction, DTW, human activity recognition 

 

I. INTRODUCTION 
Human activity monitoring via pose 

estimation and correction has a lot of real world 

applications. Bad posture is common while sitting 

or walking. Incorrect technique can lead to injuries 

while working out. Pose estimation can be used for 

solving these problems and in many other fields 

like sports coaching (to monitor athlete's 

movements to a high degree of precision) and 

assisted living (fall detection for elder, differently-

abled people). These use cases involve two parts: 

pose estimation and pose correction. Pose 

estimation can be done for single-person or multi-

person. This project is focussed on single-person 

pose estimation.  

Pose estimation predicts body keypoints 

of a person in each frame of a video feed. On the 

other hand, pose correction involves calculating the 

angles based on these keypoints and then doing 

pose correction for incorrect angles. Current state-

of-the-art deep learning based pose estimation 

models perform really well however for the use 

cases discussed above, real-time on-device 

execution on mobile devices and mid-range 

desktop setups is very crucial along with good 

accuracy and speed. 

Our objective was to make a real time on-

device application which performs pose estimation 

and correction with high speed and accuracy while 

providing a smooth user experience. 

Hence, we tested a few pose estimation 

models on factors like speed, accuracy, memory 

consumption, realtime on-device execution on two 

different setups. The models tested include 

Lightweight OpenPose [2], Pifpaf [1], Tensorflow-

Lite(mobilenet) [7],  TensorflowJS [8] (mobilenet, 

resnet) and Blazepose(via Mediapipe API) models.  

We further dove into methods for pose 

correction techniques that are performed on top of 

the blazepose model. We used techniques for 

keypoint angle calculation and correction using 

Dynamic Time Warping (DTW) [10]. We also 

developed algorithms for managing/reducing the 

amount of pose correction prompts generated for a 

better user experience.  

The paper is structured in the following 

manner: section 2 gives an overview of pose 

estimation, section 3 discusses techniques for pose 

correction and we give our concluding remarks in 

section 4. 

 

II. POSE ESTIMATION 
Pose estimation uses the pose and 

orientation of an entity to predict and track its 

location in an image/ video frame. A prediction 

outputs x,y coordinates and confidence values for 

each body keypoint detected. We tested a number 

of pose estimation models keeping in mind our 

requirements of accuracy, speed, low on-device 

memory consumption etc.  

 

2.1. Testing Methodology 

Since our goal was to find pose-estimation 

methods which are fast, accurate and work in real-

time on the client device browser, we tested all 

these different implementations on our own 

general-purpose laptops, with the kind of 

specification which any other user’s system would 

have.  
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Going with this approach also had another 

advantage that all methods are evaluated on the 

same setup. This is very important as the results ( 

FPS metrics) which each paper mentions are 

typically on different specification setups 

depending on the use case which the authors 

intended for their implementation. For eg: Pifpaf is 

better suited for urban mobility tasks such as self-

driving cars.  

 

Influencing Factors : Our problem statement was 

to do real-time pose estimation and correction, so 

we came up with a few factors which would be 

important while surveying and testing different 

models. 

 

2.1.1. Accuracy 

Accuracy of pose keypoints depends on 2 

factors: accurate x,y coordinate values and high 

confidence values of each keypoint. Along with 

fast estimation of pose keypoints it’s important to 

have high accuracy too. This is because pose 

corrections are based on the body keypoints 

generated from pose estimation and to make sure 

that the user is getting accurate and useful 

correction instructions, the estimated keypoints 

should have high accuracy. 

It’s important to take into consideration 

the speed-accuracy tradeoff of different models 

depending on the type of activity being monitored. 

 

2.1.2. Speed 

Depending on the type of physical activity 

being analyzed, there might arise a need for quick 

real-time feedback on which the pose correction 

stage is dependent. As pose correction relies on 

pose estimation hence, it’s important for the pose 

estimation model to give real-time body keypoint 

prediction so that the pose correction process can 

execute in real time too. Whereas, in some cases, 

quick real-time feedback might not be necessary 

(eg: Sitting Posture Correction) and slower model 

predictions wouldn’t cause a problem. In such 

cases, we can use a model with higher accuracy and 

lower speed (speed-accuracy tradeoff).   

 

2.1.3. On-device execution 

There are numerous reasons for 

prioritizing on-device execution. Once the model is 

loaded onto the client browser, on-device execution 

would enable client-side processing. This means 

that all the processing is happening locally and no 

video data is being sent to any remote server which 

ensures privacy of the user. This is important 

because pose estimation involves monitoring the 

user’s movements via webcam feed and the user 

might be uncomfortable if their video feed is 

leaving the device. Also, on-device execution 

means that after the model is initially loaded, there 

won’t be dependence on the network speed.  

 

2.1.4. Memory Consumption 

Since all execution is happening on-

device, hence, it’s crucial that the pose estimation 

and correction processes don’t hog too much RAM. 

Therefore, the size of the model being loaded on to 

the client device shouldn’t be too large. Also, pose 

estimation and correction should occur in real-time 

(frame by frame) because storing data for all 

frames and making predictions after the activity has 

been performed would take up a lot of memory. 

Real-time prediction is also needed since for 

exercise pose correction, fall detection the feedback 

should be instant. 

 

2.1.5. Hardware 
Now since we’ve made on-device 

execution a priority that means that the hardware 

setup specifications should be enough to handle 

real-time execution without any lag in 

performance. Also, our main aim is to find methods 

for human activity monitoring which a decent 

section of the population can easily run without any 

additional hardware requirement. Also, a lot of 

pose-estimation models perform really well on 

CUDA-enabled hardware/ NVIDIA GPUs but 

many users may not have an Nvidia GPU as part of 

their regular setups and we don’t want hardware to 

be a bottleneck. Models should be able to perform 

well solely on CPU too. So, we tested the models 

on 2 distinct setups. 

 

2.2. Model Selection 

We tested six pose estimation models on 

the two setups (as detailed in Table 1). The pose 

estimation models tested were: Lightweight 

OpenPose (Python) [2], Tflite (mobilenet v1) [7], 

Pifpaf [1], Tfjs (mobilenet v1) [8], Tfjs (Resnet 50) 

[8] and BlazePose [13] 
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 Setup-1 Setup-2 

CPU Core i5 7th Gen Core i7 9th Gen 

Graphics AMD R7 M445 4GB NVIDIA Geforce GTX 

1660 Ti, 6GB 

RAM DDR4 8 GB DDR4 16 GB 

 

Table 1: System Specifications of the setups used for model testing. NOTE: Setup-2 has dedicated graphics 

 

We went with the BlazePose model as it 

aligned the most with our use case and showed 

great speed as well as accuracy. 

BlazePose model generates 33 keypoints 

instead of the 17 keypoints generated by most 

models. Blazepose uses a two step pose estimation 

technique that first detects and then tracks the 

person. The detector detects the region of interest 

for pose estimation and then the tracker tracks the 

33 landmarks. The pose detection uses BlazeFace 

to detect the human body. It also predicts the 

midpoint of a person's hips along with the radius of 

a circle circumscribing the whole person and the 

incline angle of the line connecting the shoulder 

and hip midpoints. This results in consistent 

tracking even for very complicated cases (link). 

The tracking model predicts the 33 keypoints with 

their x location, y location and their visibility. It 

also detects the two alignment keypoints mentioned 

above. 

 

 
Fig 1: Pose landmarks in BlazePose model [14] 

 

III. POSE CORRECTION 
The second part of our problem statement 

is to identify efficient methods for pose correction. 

Just like the pose estimation part depends on 

various factors like speed, accuracy, memory 

consumption etc., in the same way different factors 

have to be kept in mind while choosing pose 

correction methods.  The mediapipe model is pretty 

fast when it comes to estimating the pose. 

However, when dealing with correcting the pose, 

there might arise for which we added a few 

algorithms to create a smooth user experience. 

 

3.1 Type of Activity 

Depending on the type of activity being 

monitored different methods for pose correction 

can be used. We came up with our own 

taxonomy/categories of activities based on factors 

such as frequency of movement in a frame and 

urgency (how quick the user needs correction 

feedback). 

https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html


 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 7 July 2021,  pp: 1691-1696 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1694 

 

3.1.1. Low-intensity Activity 

Activities which involve minimal 

movement in a frame and don’t have a sense of 

urgency associated with them. For eg:  Sitting 

posture correction. These include activities that are 

not complex and either have few pose keypoints in 

observance or do not have continuously changing 

posture.    

 

3.1.2. High-intensity Activity 

Activities which involve a lot of quick 

movements or where there’s a sense of urgency (to 

correct pose) can be categorized as high-intensity 

activities. For eg: workout pose monitoring [3], 

sports coaching, monitoring of old and differently-

abled people.  

In our case of workout correction, there 

are a lot of quick movements so it’s important to 

capture data points from each frame to ensure that 

the pose analysis is correct. This is because 

incorrect workout techniques can lead to injuries so 

the user needs to be corrected immediately.  

 

3.2. Methods 

Pose correction involves correcting the 

user’s pose. This is done by calculating the angles 

between desired keypoints. If for example we need 

to check whether the user is slouching while 

performing an exercise, we can calculate the angle 

between shoulder and hip line and hip and knee 

line. This can be done using either predefined 

corrections or matching techniques such as 

Euclidean matching or DTW [12]. For our pose 

correction methods we used eight keypoint angles 

in total (left and right inclusive). The angles 

included  are shoulder elbow wrist angle, elbow 

shoulder hip angle, shoulder hip knee angle and hip 

knee ankle angle. These angles are calculated for 

both left and right side of the body hence making a 

total of eight angles. 

 

3.2.1 Predefined Corrections 

In this type of corrections, we use 

predefined angle values that need to be corrected. If 

we need to check whether the user shows a fault in 

an angle in observance, then we simply check the 

difference between the angle of the user’s state and 

the correct angle that is predefined. This technique 

is mostly feasible in low intensity activities. Since 

this does not align with our software purpose, we 

used DTW for corrections instead of predefined 

corrections. 

 

3.2.2 DTW  

DTW or Dynamic time warping is a 

technique that checks for similarity between two 

temporal sequences [12]. DTW is used for time 

series classification [10] and also in gesture 

recognition [5]. A similar technique like DTW is 

Euclidean matching. However, DTW is considered 

better especially in this use case. The reason for 

this is that dynamic time warping compares a 

single index in an array with many others (one to 

many) whereas Euclidean matching compares a 

single index with another single index (one to one) 

[12].   

 
Fig 2: Difference between DTW and Euclidean [12]. 

 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 7 July 2021,  pp: 1691-1696 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1695 

DTW is preferable to be used over 

predefined corrections in complex environments 

where defining angles is difficult or not feasible. 

This happens in environments where there are too 

many factors into play (high intensity activity) like 

playing a sport or working out [3]. In our case, we 

usually cannot directly focus on a single angle to 

check for correctness. Hence we select a correct 

angles array
*
 and compare the users array for 

correctness by applying DTW on the two arrays. 
*
Correct angles array refers to array 

storing angles between keypoints obtained. Correct 

angles array fits this use case however is not a 

necessity and one may use any other property such 

as keypoint slopes while checking for correctness.   

 

3.2.3 Time Threshold 

If we have a speed of 100 FPS on a device 

and we raise errors for each frame, it would create 

a chaotic user experience. Even minor errors while 

performing a routine or errors that are due to the 

model inaccuracy would be introduced. To avoid 

such a situation we created a time threshold i.e. a 

quantitative value of time for which the error of the 

current frame must persist. Even though it reduces 

the FPS, it improves the performance significantly. 

The value of time threshold may be used as a 

variable, varying with the speed of the device. This 

value can be defined by taking into factor the speed 

of the model on the test device so that we do not 

create a too large or too small threshold. A 

threshold too large would miss most of the errors 

whereas a threshold too small would raise more 

frame errors. 

A time array is used for each keypoint 

angle so as to raise an error only when the program 

is completely sure of its existence. If an error 

occurs in a specific keypoint angle during the 

routine and that error persists for a time greater 

than the time threshold then only would the voice 

command be used to correct the user. If the error is 

corrected before that, then the time array for that 

keypoint angle would be changed to null/initial 

state. 

 

3.2.4 Joint Threshold 

For each exercise, we also have 

predefined joints in consideration for each workout. 

For exercise such as bicep curl, we considered 

shoulder elbow wrist angle and elbow shoulder hip 

angle. Also, for the joints in consideration for each 

exercise, we also have a predefined threshold of 

error for each joint angle. If the user makes a 

mistake exceeding the threshold angle of the 

keypoint, then only will the user be informed of the 

error. This further enhances the user experience and 

removes unnecessary errors.  

 

IV. CONCLUSION 
In this paper, we demonstrate a way to 

build an application capable of doing realtime on-

device pose estimation and correction without 

sacrificing a good user experience. We tested 

various state-of-the-art deep learning based pose 

estimation models and methods which can be used 

for pose correction. We demonstrated a way to 

manage and reduce the quantity of pose correction 

prompts for a better user experience. 

We observed that there are a few models 

which give pose predictions with high accuracy and 

speed however, the choice of the model depends on 

the use case and factors such as speed-accuracy 

trade off, type of hardware, memory consumption 

etc. 

We hope this project helps in the 

development of more real-world applications in the 

domain of human activity recognition and 

monitoring which prioritize on-device, real time 

execution. 

 

REFERENCES 
[1] Kreiss, Sven, Lorenzo Bertoni, and 

Alexandre Alahi. "Pifpaf: Composite 

fields for human pose estimation." 

Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 

2019. 

[2] Osokin, Daniil. "Real-time 2d multi-

person pose estimation on CPU: 

Lightweight OpenPose." arXiv preprint 

arXiv:1811.12004 (2018). 

[3] Chen, Steven, and Richard R. Yang. "Pose 

Trainer: correcting exercise posture using 

pose estimation." arXiv preprint 

arXiv:2006.11718 (2020). 

[4] Dang, Qi, et al. "Deep learning based 2d 

human pose estimation: A survey." 

Tsinghua Science and Technology 24.6 

(2019): 663-676. 

[5] Schneider, Pascal, et al. "Gesture 

recognition in RGB videos using human 

body keypoints and dynamic time 

warping." Robot World Cup. Springer, 

Cham, 2019. 

[6] Samkit Jain, Physio Pose: A virtual 

physiotherapy assistant. 

https://medium.com/@_samkitjain/physio-

pose-a-virtual-physiotherapy-assistant-

7d1c17db3159 

https://medium.com/@_samkitjain/physio-pose-a-virtual-physiotherapy-assistant-7d1c17db3159
https://medium.com/@_samkitjain/physio-pose-a-virtual-physiotherapy-assistant-7d1c17db3159
https://medium.com/@_samkitjain/physio-pose-a-virtual-physiotherapy-assistant-7d1c17db3159


 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 7 July 2021,  pp: 1691-1696 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1696 

[7] Tensorflow Lite Pose Estimation. 

https://www.tensorflow.org/lite/models/po

se_estimation/overview 

[8] Tensorflow-JS. 

https://github.com/tensorflow/tfjs-

models/tree/master/posenet 

[9] Ivan Kunyankin, Pose estimation and 

matching with TensorFlow lite PoseNet 

model https://medium.com/roonyx/pose-

estimation-and-matching-with-tensorflow-

lite-posenet-model-ea2e9249abbd 

[10] Mark Regan, Time series Classification: 

KNN & DTW. 

https://github.com/markdregan/K-Nearest-

Neighbors-with-Dynamic-Time-

Warping/blob/master/K_Nearest_Neighbo

r_Dynamic_Time_Warping.ipynb 

[11] Sudharshan Chandra Babu, A 2019 guide 

to Human Pose Estimation with Deep 

Learning 

https://nanonets.com/blog/human-pose-

estimation-2d-guide/ 

[12] Jeremy Zhang, Dynamic Time Warping: 

Explanation and Code Implementation. 

https://towardsdatascience.com/dynamic-

time-warping-3933f25fcdd 

[13] Bazarevsky, Valentin, et al. "BlazePose: 

On-device Real-time Body Pose tracking." 

arXiv preprint arXiv:2006.10204 (2020). 

[14] Mediapipe Pose Documentation. 

https://google.github.io/mediapipe/solutio

ns/pose.html 

 

 

https://www.tensorflow.org/lite/models/pose_estimation/overview
https://www.tensorflow.org/lite/models/pose_estimation/overview
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://medium.com/roonyx/pose-estimation-and-matching-with-tensorflow-lite-posenet-model-ea2e9249abbd
https://medium.com/roonyx/pose-estimation-and-matching-with-tensorflow-lite-posenet-model-ea2e9249abbd
https://medium.com/roonyx/pose-estimation-and-matching-with-tensorflow-lite-posenet-model-ea2e9249abbd
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://towardsdatascience.com/dynamic-time-warping-3933f25fcdd
https://towardsdatascience.com/dynamic-time-warping-3933f25fcdd
https://google.github.io/mediapipe/solutions/pose.html
https://google.github.io/mediapipe/solutions/pose.html

