

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1691-1696 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1691

On-device Realtime Pose Estimation & Correction

Ashish Ohri, Shashank Agrawal, Garima S. Chaudhary

Submitted: 01-07-2021 Revised: 10-07-2021 Accepted: 13-07-2021

ABSTRACT
Human activity monitoring via pose estimation and

correction has a lot of real world applications. Real

time pose estimation can be used for solving many

problems in fields like fitness training, sports

coaching, gaming, motion capture and assisted

living. Our focus was on utilizing human pose

estimation for fitness training. We created an AI

trainer that estimates the human pose and corrects

it while performing a workout routine. The focus of

this software is to create an immersive home

workout experience with an AI-assisted system. To

achieve this, we reviewed different pose estimation

models and pose correction algorithms. Our main

aim was to create an application that runs in

realtime on almost every device and gives real time

pose correction commands.

Keywords: pose estimation, pose correction, angle

correction, DTW, human activity recognition

I. INTRODUCTION
Human activity monitoring via pose

estimation and correction has a lot of real world

applications. Bad posture is common while sitting

or walking. Incorrect technique can lead to injuries

while working out. Pose estimation can be used for

solving these problems and in many other fields

like sports coaching (to monitor athlete's

movements to a high degree of precision) and

assisted living (fall detection for elder, differently-

abled people). These use cases involve two parts:

pose estimation and pose correction. Pose

estimation can be done for single-person or multi-

person. This project is focussed on single-person

pose estimation.

Pose estimation predicts body keypoints

of a person in each frame of a video feed. On the

other hand, pose correction involves calculating the

angles based on these keypoints and then doing

pose correction for incorrect angles. Current state-

of-the-art deep learning based pose estimation

models perform really well however for the use

cases discussed above, real-time on-device

execution on mobile devices and mid-range

desktop setups is very crucial along with good

accuracy and speed.

Our objective was to make a real time on-

device application which performs pose estimation

and correction with high speed and accuracy while

providing a smooth user experience.

Hence, we tested a few pose estimation

models on factors like speed, accuracy, memory

consumption, realtime on-device execution on two

different setups. The models tested include

Lightweight OpenPose [2], Pifpaf [1], Tensorflow-

Lite(mobilenet) [7], TensorflowJS [8] (mobilenet,

resnet) and Blazepose(via Mediapipe API) models.

We further dove into methods for pose

correction techniques that are performed on top of

the blazepose model. We used techniques for

keypoint angle calculation and correction using

Dynamic Time Warping (DTW) [10]. We also

developed algorithms for managing/reducing the

amount of pose correction prompts generated for a

better user experience.

The paper is structured in the following

manner: section 2 gives an overview of pose

estimation, section 3 discusses techniques for pose

correction and we give our concluding remarks in

section 4.

II. POSE ESTIMATION
Pose estimation uses the pose and

orientation of an entity to predict and track its

location in an image/ video frame. A prediction

outputs x,y coordinates and confidence values for

each body keypoint detected. We tested a number

of pose estimation models keeping in mind our

requirements of accuracy, speed, low on-device

memory consumption etc.

2.1. Testing Methodology

Since our goal was to find pose-estimation

methods which are fast, accurate and work in real-

time on the client device browser, we tested all

these different implementations on our own

general-purpose laptops, with the kind of

specification which any other user’s system would

have.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1691-1696 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1692

Going with this approach also had another

advantage that all methods are evaluated on the

same setup. This is very important as the results (

FPS metrics) which each paper mentions are

typically on different specification setups

depending on the use case which the authors

intended for their implementation. For eg: Pifpaf is

better suited for urban mobility tasks such as self-

driving cars.

Influencing Factors : Our problem statement was

to do real-time pose estimation and correction, so

we came up with a few factors which would be

important while surveying and testing different

models.

2.1.1. Accuracy

Accuracy of pose keypoints depends on 2

factors: accurate x,y coordinate values and high

confidence values of each keypoint. Along with

fast estimation of pose keypoints it’s important to

have high accuracy too. This is because pose

corrections are based on the body keypoints

generated from pose estimation and to make sure

that the user is getting accurate and useful

correction instructions, the estimated keypoints

should have high accuracy.

It’s important to take into consideration

the speed-accuracy tradeoff of different models

depending on the type of activity being monitored.

2.1.2. Speed

Depending on the type of physical activity

being analyzed, there might arise a need for quick

real-time feedback on which the pose correction

stage is dependent. As pose correction relies on

pose estimation hence, it’s important for the pose

estimation model to give real-time body keypoint

prediction so that the pose correction process can

execute in real time too. Whereas, in some cases,

quick real-time feedback might not be necessary

(eg: Sitting Posture Correction) and slower model

predictions wouldn’t cause a problem. In such

cases, we can use a model with higher accuracy and

lower speed (speed-accuracy tradeoff).

2.1.3. On-device execution

There are numerous reasons for

prioritizing on-device execution. Once the model is

loaded onto the client browser, on-device execution

would enable client-side processing. This means

that all the processing is happening locally and no

video data is being sent to any remote server which

ensures privacy of the user. This is important

because pose estimation involves monitoring the

user’s movements via webcam feed and the user

might be uncomfortable if their video feed is

leaving the device. Also, on-device execution

means that after the model is initially loaded, there

won’t be dependence on the network speed.

2.1.4. Memory Consumption

Since all execution is happening on-

device, hence, it’s crucial that the pose estimation

and correction processes don’t hog too much RAM.

Therefore, the size of the model being loaded on to

the client device shouldn’t be too large. Also, pose

estimation and correction should occur in real-time

(frame by frame) because storing data for all

frames and making predictions after the activity has

been performed would take up a lot of memory.

Real-time prediction is also needed since for

exercise pose correction, fall detection the feedback

should be instant.

2.1.5. Hardware
Now since we’ve made on-device

execution a priority that means that the hardware

setup specifications should be enough to handle

real-time execution without any lag in

performance. Also, our main aim is to find methods

for human activity monitoring which a decent

section of the population can easily run without any

additional hardware requirement. Also, a lot of

pose-estimation models perform really well on

CUDA-enabled hardware/ NVIDIA GPUs but

many users may not have an Nvidia GPU as part of

their regular setups and we don’t want hardware to

be a bottleneck. Models should be able to perform

well solely on CPU too. So, we tested the models

on 2 distinct setups.

2.2. Model Selection

We tested six pose estimation models on

the two setups (as detailed in Table 1). The pose

estimation models tested were: Lightweight

OpenPose (Python) [2], Tflite (mobilenet v1) [7],

Pifpaf [1], Tfjs (mobilenet v1) [8], Tfjs (Resnet 50)

[8] and BlazePose [13]

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1691-1696 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1693

 Setup-1 Setup-2

CPU Core i5 7th Gen Core i7 9th Gen

Graphics AMD R7 M445 4GB NVIDIA Geforce GTX

1660 Ti, 6GB

RAM DDR4 8 GB DDR4 16 GB

Table 1: System Specifications of the setups used for model testing. NOTE: Setup-2 has dedicated graphics

We went with the BlazePose model as it

aligned the most with our use case and showed

great speed as well as accuracy.

BlazePose model generates 33 keypoints

instead of the 17 keypoints generated by most

models. Blazepose uses a two step pose estimation

technique that first detects and then tracks the

person. The detector detects the region of interest

for pose estimation and then the tracker tracks the

33 landmarks. The pose detection uses BlazeFace

to detect the human body. It also predicts the

midpoint of a person's hips along with the radius of

a circle circumscribing the whole person and the

incline angle of the line connecting the shoulder

and hip midpoints. This results in consistent

tracking even for very complicated cases (link).

The tracking model predicts the 33 keypoints with

their x location, y location and their visibility. It

also detects the two alignment keypoints mentioned

above.

Fig 1: Pose landmarks in BlazePose model [14]

III. POSE CORRECTION
The second part of our problem statement

is to identify efficient methods for pose correction.

Just like the pose estimation part depends on

various factors like speed, accuracy, memory

consumption etc., in the same way different factors

have to be kept in mind while choosing pose

correction methods. The mediapipe model is pretty

fast when it comes to estimating the pose.

However, when dealing with correcting the pose,

there might arise for which we added a few

algorithms to create a smooth user experience.

3.1 Type of Activity

Depending on the type of activity being

monitored different methods for pose correction

can be used. We came up with our own

taxonomy/categories of activities based on factors

such as frequency of movement in a frame and

urgency (how quick the user needs correction

feedback).

https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1691-1696 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1694

3.1.1. Low-intensity Activity

Activities which involve minimal

movement in a frame and don’t have a sense of

urgency associated with them. For eg: Sitting

posture correction. These include activities that are

not complex and either have few pose keypoints in

observance or do not have continuously changing

posture.

3.1.2. High-intensity Activity

Activities which involve a lot of quick

movements or where there’s a sense of urgency (to

correct pose) can be categorized as high-intensity

activities. For eg: workout pose monitoring [3],

sports coaching, monitoring of old and differently-

abled people.

In our case of workout correction, there

are a lot of quick movements so it’s important to

capture data points from each frame to ensure that

the pose analysis is correct. This is because

incorrect workout techniques can lead to injuries so

the user needs to be corrected immediately.

3.2. Methods

Pose correction involves correcting the

user’s pose. This is done by calculating the angles

between desired keypoints. If for example we need

to check whether the user is slouching while

performing an exercise, we can calculate the angle

between shoulder and hip line and hip and knee

line. This can be done using either predefined

corrections or matching techniques such as

Euclidean matching or DTW [12]. For our pose

correction methods we used eight keypoint angles

in total (left and right inclusive). The angles

included are shoulder elbow wrist angle, elbow

shoulder hip angle, shoulder hip knee angle and hip

knee ankle angle. These angles are calculated for

both left and right side of the body hence making a

total of eight angles.

3.2.1 Predefined Corrections

In this type of corrections, we use

predefined angle values that need to be corrected. If

we need to check whether the user shows a fault in

an angle in observance, then we simply check the

difference between the angle of the user’s state and

the correct angle that is predefined. This technique

is mostly feasible in low intensity activities. Since

this does not align with our software purpose, we

used DTW for corrections instead of predefined

corrections.

3.2.2 DTW

DTW or Dynamic time warping is a

technique that checks for similarity between two

temporal sequences [12]. DTW is used for time

series classification [10] and also in gesture

recognition [5]. A similar technique like DTW is

Euclidean matching. However, DTW is considered

better especially in this use case. The reason for

this is that dynamic time warping compares a

single index in an array with many others (one to

many) whereas Euclidean matching compares a

single index with another single index (one to one)

[12].

Fig 2: Difference between DTW and Euclidean [12].

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1691-1696 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1695

DTW is preferable to be used over

predefined corrections in complex environments

where defining angles is difficult or not feasible.

This happens in environments where there are too

many factors into play (high intensity activity) like

playing a sport or working out [3]. In our case, we

usually cannot directly focus on a single angle to

check for correctness. Hence we select a correct

angles array
*
 and compare the users array for

correctness by applying DTW on the two arrays.
*
Correct angles array refers to array

storing angles between keypoints obtained. Correct

angles array fits this use case however is not a

necessity and one may use any other property such

as keypoint slopes while checking for correctness.

3.2.3 Time Threshold

If we have a speed of 100 FPS on a device

and we raise errors for each frame, it would create

a chaotic user experience. Even minor errors while

performing a routine or errors that are due to the

model inaccuracy would be introduced. To avoid

such a situation we created a time threshold i.e. a

quantitative value of time for which the error of the

current frame must persist. Even though it reduces

the FPS, it improves the performance significantly.

The value of time threshold may be used as a

variable, varying with the speed of the device. This

value can be defined by taking into factor the speed

of the model on the test device so that we do not

create a too large or too small threshold. A

threshold too large would miss most of the errors

whereas a threshold too small would raise more

frame errors.

A time array is used for each keypoint

angle so as to raise an error only when the program

is completely sure of its existence. If an error

occurs in a specific keypoint angle during the

routine and that error persists for a time greater

than the time threshold then only would the voice

command be used to correct the user. If the error is

corrected before that, then the time array for that

keypoint angle would be changed to null/initial

state.

3.2.4 Joint Threshold

For each exercise, we also have

predefined joints in consideration for each workout.

For exercise such as bicep curl, we considered

shoulder elbow wrist angle and elbow shoulder hip

angle. Also, for the joints in consideration for each

exercise, we also have a predefined threshold of

error for each joint angle. If the user makes a

mistake exceeding the threshold angle of the

keypoint, then only will the user be informed of the

error. This further enhances the user experience and

removes unnecessary errors.

IV. CONCLUSION
In this paper, we demonstrate a way to

build an application capable of doing realtime on-

device pose estimation and correction without

sacrificing a good user experience. We tested

various state-of-the-art deep learning based pose

estimation models and methods which can be used

for pose correction. We demonstrated a way to

manage and reduce the quantity of pose correction

prompts for a better user experience.

We observed that there are a few models

which give pose predictions with high accuracy and

speed however, the choice of the model depends on

the use case and factors such as speed-accuracy

trade off, type of hardware, memory consumption

etc.

We hope this project helps in the

development of more real-world applications in the

domain of human activity recognition and

monitoring which prioritize on-device, real time

execution.

REFERENCES
[1] Kreiss, Sven, Lorenzo Bertoni, and

Alexandre Alahi. "Pifpaf: Composite

fields for human pose estimation."

Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition.

2019.

[2] Osokin, Daniil. "Real-time 2d multi-

person pose estimation on CPU:

Lightweight OpenPose." arXiv preprint

arXiv:1811.12004 (2018).

[3] Chen, Steven, and Richard R. Yang. "Pose

Trainer: correcting exercise posture using

pose estimation." arXiv preprint

arXiv:2006.11718 (2020).

[4] Dang, Qi, et al. "Deep learning based 2d

human pose estimation: A survey."

Tsinghua Science and Technology 24.6

(2019): 663-676.

[5] Schneider, Pascal, et al. "Gesture

recognition in RGB videos using human

body keypoints and dynamic time

warping." Robot World Cup. Springer,

Cham, 2019.

[6] Samkit Jain, Physio Pose: A virtual

physiotherapy assistant.

https://medium.com/@_samkitjain/physio-

pose-a-virtual-physiotherapy-assistant-

7d1c17db3159

https://medium.com/@_samkitjain/physio-pose-a-virtual-physiotherapy-assistant-7d1c17db3159
https://medium.com/@_samkitjain/physio-pose-a-virtual-physiotherapy-assistant-7d1c17db3159
https://medium.com/@_samkitjain/physio-pose-a-virtual-physiotherapy-assistant-7d1c17db3159

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1691-1696 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030716911696 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1696

[7] Tensorflow Lite Pose Estimation.

https://www.tensorflow.org/lite/models/po

se_estimation/overview

[8] Tensorflow-JS.

https://github.com/tensorflow/tfjs-

models/tree/master/posenet

[9] Ivan Kunyankin, Pose estimation and

matching with TensorFlow lite PoseNet

model https://medium.com/roonyx/pose-

estimation-and-matching-with-tensorflow-

lite-posenet-model-ea2e9249abbd

[10] Mark Regan, Time series Classification:

KNN & DTW.

https://github.com/markdregan/K-Nearest-

Neighbors-with-Dynamic-Time-

Warping/blob/master/K_Nearest_Neighbo

r_Dynamic_Time_Warping.ipynb

[11] Sudharshan Chandra Babu, A 2019 guide

to Human Pose Estimation with Deep

Learning

https://nanonets.com/blog/human-pose-

estimation-2d-guide/

[12] Jeremy Zhang, Dynamic Time Warping:

Explanation and Code Implementation.

https://towardsdatascience.com/dynamic-

time-warping-3933f25fcdd

[13] Bazarevsky, Valentin, et al. "BlazePose:

On-device Real-time Body Pose tracking."

arXiv preprint arXiv:2006.10204 (2020).

[14] Mediapipe Pose Documentation.

https://google.github.io/mediapipe/solutio

ns/pose.html

https://www.tensorflow.org/lite/models/pose_estimation/overview
https://www.tensorflow.org/lite/models/pose_estimation/overview
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://medium.com/roonyx/pose-estimation-and-matching-with-tensorflow-lite-posenet-model-ea2e9249abbd
https://medium.com/roonyx/pose-estimation-and-matching-with-tensorflow-lite-posenet-model-ea2e9249abbd
https://medium.com/roonyx/pose-estimation-and-matching-with-tensorflow-lite-posenet-model-ea2e9249abbd
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://towardsdatascience.com/dynamic-time-warping-3933f25fcdd
https://towardsdatascience.com/dynamic-time-warping-3933f25fcdd
https://google.github.io/mediapipe/solutions/pose.html
https://google.github.io/mediapipe/solutions/pose.html

